
Development of a phoneme-to-phoneme (p2p) converter to improve the
grapheme-to-phoneme (g2p) conversion of names

Qian Yang(a) 1, Jean-Pierre Martens(a), Nanneke Konings(b), Henk van den Heuvel(b)

(a) Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
martens@elis.ugent.be

(b) Centre for Language and Speech Technology, Radboud University, Nijmegen, the Netherlands

Abstract
It is acknowledged that a good phonemic transcription of proper names is imperative for the success of many modern speech-based
services such as directory assistance, car navigation, etc. It is also known that state-of-the-art general-purpose grapheme-to-phoneme
(g2p) converters perform rather poorly on many name categories. This paper proposes to use a g2p-p2p tandem comprising a state-of-
the-art general-purpose g2p converter that produces an initial transcription and a name category specific phoneme-to-phoneme (p2p)
converter that aims at correcting the mistakes made by the g2p converter. The main body of the paper describes a novel methodology
for the automatic construction of the p2p converter. The methodology is implemented in a software toolbox that will be made publicly
available in a form that will permit the user to design a p2p converter for an arbitrary name category. To give a proof of concept, the
toolbox was used for the development of three p2p converters for first names, surnames and geographical names respectively. The
obtained systems are small (few rules) and effective: significant improvements (up to 50% relative) of the grapheme-to-phoneme
conversion are obtained. These encouraging results call for a further development and improvement of the approach.

1 Has recently moved to Nuance

1. Introduction
Speech synthesis and recognition technologies can enable
the development of very natural man-machine interfaces
for applications such as car navigation, reverse directory
assistance, stock management, etc. However, for being
effective both technologies need good pronunciations (=
phonemic transcriptions) of the many proper names
(person names, place names, brand names, etc.) that occur
in these kind of applications.

It is acknowledged though (Yvon et al, 1998; Quazza,
van den Heuvel, 2000; Boula de Mareüil, 2005;…) that
general-purpose grapheme-to-phoneme (g2p) converters
usually produce a significant number of mistakes when
converting proper names. This is not so surprising since
proper names can have archaic spellings, they are often of
a foreign origin and therefore not pronounced according to
the normal g2p rules of the target language, etc.
Consequently, one needs a dedicated g2p converter that
models the peculiarities of the pronunciations of the
envisaged name category. One way of accomplishing this
is by developing such a converter using self-learning
techniques. All it takes is good machine learning software
and a sufficiently large pronunciation dictionary of names
and their correct transcription(s). However, it has been
shown (Bouma, 2000; Anderson, 1996) that the quality of
such a g2p converter very much depends on the size and
the quality of the available pronunciation dictionary. In
(Bouma, 2000) for instance the word error rate augments
by almost 40% if the size of the training dictionary is
reduced from 40 to 20K words.

In this paper we propose an alternative, two-step
approach. In the first step we let a full fletched general-

purpose g2p converter produce an initial transcription. In
the second step, we let a so-called phoneme-to-phoneme
(p2p) converter correct this initial transcription. This is an
attractive option because it permits the p2p converter to
profit from the knowledge of the general-purpose g2p
converter (e.g. its morphological knowledge which gave
rise to the syllabification and accentuation). Furthermore,
since the p2p converter only has to focus on pronunciation
rules which are typical for the envisaged name category,
we anticipate that it will be compact (few rules), and that
it will not take a very large name pronunciation dictionary
to attain a good performance.

The idea of using a two-step approach for g2p
conversion is not entirely new: Bouma (2000) developed a
g2p converter as a tandem of a simple system based on
handcrafted rules and a more elaborate finite state
transducer that was designed in a data-driven way to
improve the initial transcriptions. Main differences
between our work and that of Bouma are (1) that we
depart from a more powerful state-of-the-art g2p
converter, (2) that we consider syllabification and stress
assignment as integral parts of the g2p conversion, (3) that
we adopt other rule formalisms and rule learning
approaches, and (4) that we presume to have no access to
the exact grapheme-phoneme transformations performed
by the initial stage.

The remaining part of the paper is organized as
follows. In Section 2 we provide some definitions and
conventions that we need further on. In Sections 3 and 4
we outline the proposed g2p-p2p tandem approach, and
the different steps involved in the automatic p2p learning
process. In Section 5 we describe how the p2p converter is
integrated in the transcription process. In Section 6 we

287

discuss how the software tools were used with success for
the creation of p2p converters for three name categories:
first names, surnames and geographical names. The paper
ends with a discussion of the obtained results and the
directions for future research.

2. Some definitions and conventions
Although we presume that the reader knows very well
what graphemes and phonemes are, we think it is useful at
this point to make explicit what we mean by a phonemic
and orthographic transcription in the present work.

A phonemic transcription is a text string that can be
decomposed into phonemic units, and a phonemic unit can
be a phoneme, a boundary mark or a stress mark.
Boundary marks represent intra-word and inter-word
syllable boundaries (a name may consist of several
constituent words). Stress marks represent primary or
secondary lexical syllable stresses. Phonemic units can be
multi-character strings, provided they do not hamper a
unique decomposition of the phonemic transcriptions.

An orthographic transcription is a text string that can
be decomposed into graphemic units, and a graphemic
unit can be a grapheme, a punctuation mark or a space. It
has been demonstrated by Bouma (2000) and others that
the g2p conversion is easier to formulate if one considers
multi-character strings that usually translate to one
phoneme as graphemes. Therefore, we also support the
definition of graphemes like “aa”, “ie”, “eau” etc.
Nevertheless, when aligning an orthographic transcription
with a phonemic one (see Section 4) we will allow that
“ie” for instance is decomposed into “i” and “e” if this is
supported by the phonemic transcription.

In the following sections we will use the term pattern
to indicate a sequence of consecutive units (phonemic or
graphemic).

3. A two-step g2p converter strategy
The general architecture of the proposed two-step g2p
conversion system is depicted on Figure 1.

Figure 1 : Architecture of a two-step g2p converter

The general-purpose g2p converter creates an initial
phonemic transcription which is then corrected by the p2p
converter. In order to perform its work, the p2p converter
can inspect both the initial phonemic transcription and the
orthography of the name it has to process. The heart of the
p2p converter is a set of stochastic correction rules, with
each rule expressing the following:

If a particular phonemic pattern (called the rule input)
occurs in the initial phonemic transcription and if the
context in which it occurs meets the rule condition,
then it may have to be transformed, with a certain
firing probability, to an alternative phonemic pattern
(called the rule output) in the final transcription.

The rule condition can describe constraints on the
identities of the phonemes surrounding the rule input, the
stress level of the syllable associated with that input, the
position of this syllable in the word, etc. It can also
express constraints on graphemic patterns corresponding
to the rule input and its neighborhood.

We will distinguish three types of correction rules: (1)
stress substitution rules (SS-rules) which replace a stress
mark by another (no-stress is also considered as a stress
mark here), (2) phoneme substitution and deletion rules
(PSD-rules) which transform a phonemic pattern into
another one (including the empty pattern representing a
pattern deletion) and (3) phoneme insertion rules (PI-
rules) inserting a phonemic pattern at some position. The
linguistic features for describing the context can be
different for the respective rule types.

The rewrite rules can be implemented in the form of
decision trees (DTs), like in (Andersen, 1996), or in the
form of rule networks (RNs), like in (Yang & Martens,
2002). In the case of DTs each tree comprises the rules
that apply to a particular rule input whereas in the case of
RNs each network comprises the rules that perform the
same input/output transformation. The DTs and RNs are
learned automatically from training examples by means of
machine learning algorithms that were previously applied
with success to add pronunciation variants to the lexicon
of an automatic speech recognizer (Yang, 2005).

4. Learning correction rules
The learning of correction rules is a four-step procedure.
The aim of the first step is to align the initial phonemic
transcription with the other two transcriptions, namely the
correct phonemic and the orthographic transcriptions (the
latter alignment is only needed if orthographic features
will be used). The second step then retrieves from these
alignments the rule input/output transformations that can
explain the systematic errors made by the standard g2p.
Given these transformations, the alignments are re-used
(step 3) to generate the training examples from which to
learn the correction rules. The final step is the actual rule
induction from theses examples. The whole rule learning
process is visualized on Figure 2.

Figure 2 : Automatic learning of the p2p converter

Initial
Transcription

Correct
transcription

Orthography

Induce
rules

Generate
examples

Align

Align

Learn
transformations

General-purpose
g2p converter

initial
phonemic

transcription

p2p
converter

final
phonemic

transcription

orthography

288

4.1. Step 1 : transcription alignments
The p-to-p alignment between the initial and the correct
phonemic transcription is intended to reveal the pattern
transformations that can convert the initial transcriptions
into correct ones. The alignment is represented in the form
of two equally long extended transcriptions differing from
the original transcriptions by the presence of so-called
empty units, denoted as tildes. The following example
shows such an alignment:

I: ‘ r o . d $ ~ . b A ~ . ‘2 x l a n
C: ‘ r o . d $ n . b A x . ~ ~ l a n

Figure 3 : alignment between the initial (I) and the correct
(C) phonemic transcription

For the moment it suffices to note that this alignment
reveals a missing /n/, a misplaced final syllable boundary
(/./) and a superfluous secondary stress mark (/’2/) in the
initial transcription. In the next section we will describe
which transformations to derive from this example.

If the p2p converter selects a certain pattern in the
initial phonemic transcription and if it wants to determine
the graphemic context in which this pattern occurs, then it
needs the grapheme-phoneme correspondences implied by
the initial g2p conversion. Since we presume to have no
access to internal information of the initial g2p converter,
we need to perform an independent p-to-g alignment
between the initial phonemic transcription and the
orthography. An example alignment is the following:

I: ‘ r o . d $ ~ . b A . ‘2 x ~ l a n
O: ~ r o ~ d e n ~ b a ~ ~ c h l aa n

Figure 4 : alignment between the initial (I) phonemic and
the orthographic (O) transcription

It shows for instance that the phoneme /x/ comes from the
graphemic pattern “ch” and that the final /a/ comes from
the multiple-character grapheme “aa”.

The p-to-p alignment is a DTW process which is
driven by a simple correspondence model, consisting of an
associated unit set per phonemic unit. It expresses that if a
phonemic unit occurs in the initial transcription, the unit at
the corresponding position of the correct transcription is
normally expected to be the same unit or a unit belonging
to its associated set. The p-to-g alignment is driven by a
similar correspondence model, but now the associated set
of a phonemic unit consists of graphemic units. This
model expresses that a phonemic unit occurring in the
initial transcription is expected to originate from a
member of its associated set of graphemic units.

The p-to-p alignment is so designed that a boundary/
stress mark cannot be lined up with anything else than a
boundary/stress mark. In the p-to-g alignment on the other
hand, a boundary mark can be lined up with a predefined
set of graphemic units (e.g. a space, a hyphenation mark,
etc.) whereas a stress mark has no equivalent at all in the
orthography. This means that a stress mark is always lined
up with an empty unit.

Both alignment processes (p-to-p and p-to-g) are
finally controlled by four probabilities: (1) the chance of
lining up a unit of the 1st (initial) transcription with an
empty unit of the 2nd (correct) transcription, (2) the

chance of lining it up with a unit of its associated set, (3)
the chance of lining it up with an eligible unit outside its
associated set, and (4) the chance of lining up a unit of the
2nd transcription with an empty unit of the 1st
transcription. These probabilities can be given common
sense initial values first and can be further optimized
using maximum-likelihood re-estimation.

The presented p-to-g alignment strategy can be
considered as an extension of the “allowable mapping”
approach proposed in Black et al (1998) and later utilized
in Bouma (2000). However, a novelty is that if a multi-
character grapheme corresponds to two phonemes having
associated sets containing the constituent parts of this
grapheme, the grapheme is decomposed. An example of
this is Aisha: grapheme “ai” is pronounced as /a i/ here.

If both the p-to-p and the p-to-g alignments are
available, extra empty units can be introduced to visualize
the correspondences between all three transcriptions (see
Figure 5 combining the alignments of Figures 3 and 4).

C: ‘ r o . d $ n . b A x . ~ ~ ~ l a n
I: ‘ r o . d $ ~ . b A ~ . ‘2 x ~ l a n
O: ~ r o ~ d e n ~ b a ~ ~ ~ c h l aa n

Figure 5: two alignments combined into one

Since all the extended transcriptions are equally long, the
alignment can be viewed as a table with one column per
unit and three units (from three transcriptions) per column.

4.2. Step 2 : transformation learning
The initial-to-correct pattern transformations that can
convert the initial transcription into the correct one are
retrieved from the p-to-p alignment. First we determine
the stress mark transformations that are needed, and then
we determine the phonemic pattern transformations.

Since we do not think it is easy to find rules for
correcting the number of syllables, we have only tried to
identify stress mark substitutions for initial syllables that
are lined up with a correct syllable. From the example of
Figure 3, we would retrieve one such a substitution /’2/-
to-/’0/ with /’0/ representing the no-stress case.

Once the stress transformations have been identified,
the stress marks are removed from the extended
transcriptions. For the example of Figure 3 we then get

I: r o . d $ ~ . b A ~ . x l a n
C: r o . d $ n . b A x . ~ l a n

On this transcription pair we then perform a left-to-right
(starting at the initial column) longest mismatch search. At
a given position it determines the successive columns
containing different units. The transformations are then
obtained by removing the empty units from the input and
output pattern found in these columns (these empty units
are only there to visualize the alignment). For the given
example we would retrieve two phonemic pattern
transformations, namely //-to-/n/ and /.x/-to-/x./.

We collect all the transformations that can explain a
sufficiently large fraction of the observed errors in a so-
called transformation list.

289

4.3. Step 3 : training example generation
Once the transformation list is available, the generation of
training examples can start. Recalling that we want to
learn three types of correction rules: (1) stress substitution
rules (SS-rules), (2) phoneme substitution and deletion
rules (PSD-rules) and (3) phoneme insertion rules (PI-
rules), we will also have to generate three types of
examples. Each example consists of a rule input, a rule
output and a set of features describing the linguistic
context in which the rule input occurs.

For the generation of SS-examples we determine the
corresponding syllables in the initial and the correct
transcription. For each syllable of the initial transcription
that is lined up with a correct syllable we then establish
the input & output stress mark and the features describing
the syllabic context. Examples of such features are: the
stress levels of the previous and next syllable, the identity
of the vowel (grapheme), etc. Obviously, if graphemic
features are involved, the p-to-g alignment must be taken
into account as well. Once the SS-examples have been
generated, the stress marks are removed from the
transcriptions.

For generating the PSD and PI-examples, we adopt a
process involving (1) a segmentation of the initial
transcription into modifiable patterns (rule inputs) and
non-modifiable units, (2) a determination of the correct
patterns (rule outputs) for the modifiable patterns, and (3)
an extraction of the linguistic features describing the
context in which the rule inputs occur. The modifiable
patterns are non-empty inputs of transformations produced
in step 2.

The segmentation of the initial transcription is a two-
stage process. In the first stage, the transcription is aligned
with a stochastic loop model comprising forward branches
that consume a modifiable pattern (one branch per pattern
that can occur), one forward branch that can consume any
phonemic unit, and one feedback branch that does not
consume any unit. The transition probabilities on the
different branches are defined in such a way that the
aligner will prefer modifiable patterns over other patterns
and longer modifiable patterns over sequences of shorter
ones. If there are several solutions with the same number
of segments, the aligner will select the one with the largest
product of rule input frequency counts (these counts are
presumed to be available in the transformation list).

Once the initial segmentation is performed one knows
how many non-empty modifiable patterns to select, and
thus, how many PSD-examples to generate. However,
before one can generate these examples one must also take
the transformation list and the correspondences between
the initial and the correct transcription into account. This
can best be illustrated by an example. Suppose that the
initial segmentation gave rise to the following result (now
presented in tabular form) :

I: .. I ~ . k o . v E s . ~ t r
C: .. i k . h o . v $ ~ . s t r

and that (/Es./,/$.s/) is in the transformation list. Then this
segmentation has to be changed to

I: .. I ~ . k o . v E s . ~ t r
C: .. i k . h o . v $ ~ . s t r

In general, a rule input pattern is extended at one or both
ends with empty units originating from the p-to-p
alignment (recognizable by a non-empty unit in the
correct transcription) if by this extension one can increase
the number of initial-to-correct transformations belonging
to the transformation list. Once the final segmentation is
established, one can determine for each identified rule
input the corresponding correct output and the linguistic
features describing the context in which the input occurs.
Examples of such features are: the identities of the
phonemes in the immediate vicinity of the rule input, the
stress level of the syllable to which the rule input belongs,
the initial grapheme of the graphemic pattern that was
responsible for the production of the rule input, etc.

Once the PSD-examples are generated one can finally
generate the PI-examples, one for every segment with a
non-empty initial transcription. If no empty units are
found in the initial transcription in front of this segment,
the rule output is empty, in the other case it is the
phonemic pattern under the found empty pattern. In the
example above, there would be one real insertion, namely
the //-to-/k/ in front of the first syllable boundary.

4.4. Step 4 : rule induction
The generated training examples are supplied to an
inductive learning algorithm. Thus far, we have
implemented two such algorithms: (1) a top-down divisive
clustering algorithm producing a decision tree (DT) for
each modifiable pattern appearing in the transformation
list, and (2) a bottom-up agglomerative clustering
algorithm producing a rule network (RN) for each
transformation of the same list.

The TD learning algorithm will grow a DT by splitting
a node into two sub-nodes on the basis of the most
informative yes/no question that can be asked at that node.
Since it has been shown that more robust trees can be
learned if asking questions about whether a feature
belongs to particular value class are allowed (Andersen,
1996), we have accommodated the facility to specify such
value classes for the different feature types that appear in
the linguistic description of the training examples.

The RN learning algorithm will first construct a layer
of all the different feature combinations that were
encountered in the training data at positions where a given
transformation had to be performed. Then a network
generator will create more and more general nodes by
removing one feature at the time. Which features can be
removed from a given node is determined on the basis of
the expected importance of the features constituting this
node. To that end the feature set is divided into subsets
with increasing importance.

Both learning algorithms require a rule set evaluation
criterion that can be used to decide whether a new node
has to be added to a DT or whether a node can be
eliminated from an RN. The two implemented criteria are:
(1) entropy, measured on the training set (Yang &
Martens, 2000) and (2) quality, measured on a validation
set (Yang, 2005).

5. The actual p2p conversion
If the orthography is involved in the description of the
correction rules, the p2p converter starts with performing
an alignment between the initial phonemic transcription
and the orthography.

290

The next step is the examination of each syllable of the
initial transcription and the application of the SS-rules on
syllables for which the conditions are met.

The third step consists of a segmentation of the initial
phonemic transcription into modifiable patterns and non-
modifiable units. The algorithm is the initial segmentation
algorithm described in Section 4.32.

Once the segmentation is available, the pronunciation
variant generator will try PI rules at the start of each non-
empty segment and PSD rules at the start of each
modifiable segment. If at a certain point one or more rules
can be applied, different variants (including the one in
which the input pattern is preserved) can be generated at
the corresponding point in already created partial variants
(Yang & Martens, 2002). The output of the pronunciation
variant generator is a tree shaped network representing
different transcriptions with different probabilities. The
p2p converter will select the transcription with the highest
probability as the final phonemic transcription. Obviously,
one can expect that in a number of cases this transcription
is identical to the initial transcription.

6. System implementation and evaluation
The methodology described in the previous sections was
implemented in a software toolbox written in ANSI-C. It
contains a transcription tool that can be used with and
without a p2p converter being activated. A p2p converter
is activated as soon as its rule set (produced by the
learning tools) is uploaded.

The software allows the user to change the phonemic
and graphemic unit set, the correspondence models
controlling the aligners, the question list and the feature
importance information driving the rule induction, the
linguistic feature set, etc. This way it offers the flexibility
that may be needed for the design of good dedicated p2p
converters for medical terms, brand names, company
names and other interesting name categories for which
one is able to collect a proper training lexicon.

6.1. Experimental setup
The toolbox was used for the development of three g2p
converters for three Dutch name categories: first names,
surnames and geographical names (street & city names).
The general-purpose g2p converter, designed for the
transcription of words occurring in a general text, was the
one embedded in the Belgian Dutch Nuance RealSpeak
synthesizer (see http://www.nuance.com/realspeak).

The p2p converters are trained and tested on lexical
databases containing one up to four manually verified
transcriptions for each name. For each name category, the
lexical database was divided into a training set and a test
set. The test set is balanced with respect to criteria such as
linguistic origin, length in characters, etc. of the names.
Table 1 shows the number of names in the different sets.

The performance of a g2p converter is represented by
its word error rate (WER), defined as the percentage of
names of the test set which got an incorrect transcription,
and by its word improvement rate (WIR), defined as the
percentage of words with a better minus the percentage of
words with a worse transcription than the one originating

2 Note that there is no need to extend the modifiable patterns (as
during example generation) since there is no p-to-p alignment
now, and thus no empty units that can result from it.

from a reference g2p converter (our reference is the
general-purpose g2p converter).

category training set test set
first names 80059 8382
surnames 19556 3000
geographical names 20000 18056

Table 1 : Number of names in the training and test
lexicons available for the three name categories

6.2. The first experiments
In this section we describe the first experiments we carried
out so far. We only tested the impact of PSD rules, and we
evaluated the transcriptions discarding the stress marks
they contain.

We defined a graphemic unit set which is composed of
64 single-character units (letters, digits, punctuations) and
20 multi-character units such as /aa/, /ou/, /eau/, etc.

In a first attempt, we chose a set of 14 features to
describe the rule conditions: four features specifying the
phonemic context (2 phonemic units before and after the
rule input), six features revealing the syllabic context (the
stress levels and the identity of the vowel in the preceding,
the present and the next syllable), two booleans indicating
whether the rule input belongs to the initial or final
syllable of the word, and two features describing the
graphemic context (the initial unit of the graphemic
pattern that produced the rule input, and a boolean telling
whether this graphemic pattern was a multi-character
pattern or not). The present feature set should by no means
be considered as final. Future research is bound to find a
better feature set.

Using the selected features we have learned two p2p
converters per name category (we tested top-down rule
learning in combination with entropy and quality as the
evaluation criteria). The obtained g2p-p2p tandem
performances are listed in Table 2 (in this Table “equal”
means different from the reference, but equally good).

Table 2 : performances of g2p and g2p-p2p systems on
three name tasks (Q = quality, E = entropy)

All p2p converters were learned using the same settings of
the control parameters. The number of learned correction
rules ranged from 192 to 444. Although the differences
are small, the best p2p converters for all name types were
obtained using Entropy as the decision criterion.

7. Discussion and future work
The figures in Table 2 show that significant improvements
over the baseline system are possible with small p2p

type system WER
(%)

better
(%)

equal
(%)

worse
(%)

first g2p alone 34.2
g2p-p2pQ 30.0 8.8 0.6 2.9
g2p-p2pE 29.7 8.7 0.7 2.2

sur g2p alone 38.4
g2p-p2pQ 30.1 15.6 1.2 3.7
g2p-p2pE 27.9 17.6 0.9 2.8

geo g2p alone 32.5
g2p-p2pQ 22.6 16.5 1.3 1.9
g2p-p2pE 22.3 17.4 1.4 2.1

291

converters. For the geo name case, the WER is reduced by
30% and the p2p converter is able to transform more than
53% of the erroneous initial transcriptions to a better
transcription. The WIR is 15.3% which is about 47% of
the maximum attainable improvement of 32.5%.

Although these results are very valuable already, we
conjecture that they can be surpassed by introducing a
better feature set, and by implementing PI-rules and SS-
rules on top of the PSD-rules tested thus far.

One research line we are pursuing in this respect is the
development of a ‘deductive’ methodology. The aim is to
use our linguistic knowledge as a top-down instrument to
qualify differences between the initial transcriptions and
the correct transcriptions. For geographical names we
have observed, for instance, that many syllabification
errors occurring in the initial transcription originate from
the fact that the morphological integrity of topological
entities such as ‘kamp’ (camp), ‘erf’ (estate), ‘dijk’ (dike),
‘veld’ (field)is not respected. Similarly, we have also
observed a lot of syllabification errors in diminutive (first)
names. The deductive approach will be explored along
two lines. First of all, we will assess the improvement that
can be obtained by implementing deductive rules to either
the initial g2p transcriptions or the final transcriptions
emerging from the g2p-p2p tandem. Secondly, we will
incorporate graphemic patterns such as ‘kamp’, ‘erf’, ‘tje’,
etc. in the linguistic feature set utilized by the inductive
rule learner. This way we hope to find appropriate rules
for coping with the mentioned morphemic problems. All
this would then show the potential synergy of both the
inductive and deductive approaches.
We also need to verify our claim that by using a g2p-p2p
tandem we can do better than with a dedicated one-step
g2p converter, trained on the same training lexicon the
p2p converter is trained on. For geographical names we
already trained one such a g2p using TIMBL (Daelemans
et al, 2004). It yielded a WER of 22.1% and a WIR of
10.5% over the Nuance g2p. With the g2p-p2p-tandem the
figures are 22.3% and 15.3% respectively.
Note that in applications involving different name types as
well as ordinary words, the proposed g2p-p2p approach
can lead to a much more memory efficient solution than
an approach requiring multiple full-fletched dedicated g2p
converters. For instance, the dedicated g2p emerging from
TIMBL comprises all the training examples whereas our
p2p converter needs to store only 192 correction rules.

8. Conclusion
This paper was devoted to the grapheme-to-phoneme
conversion of proper names. We have established that the
commercially available general-purpose g2p converters
partly fail on such a task, and we have therefore proposed
to adopt a two-step approach in which the initial
transcriptions generated by such a converter are corrected
by a phoneme-to-phoneme converter which is learned
fully automatically on the basis of a pronunciation
directory containing names from the envisaged name
category (with their correct transcription of course). We
have also proposed a novel learning methodology and
implemented it in the form of a software toolbox. The first
tests on first names, surnames and geographical names
have demonstrated that significant improvements can be
achieved. For geographical names for instance, 53% of the
erroneous initial transcriptions were converted to a better

transcription, and less than 1.4% of the correct initial
transcriptions appeared to contain errors after p2p
conversion. These results were obtained with a small rule
set (192 rules) and a very simple feature set for describing
the rule condition. We argue that larger improvements are
possible with more intelligently chosen features, e.g.
morphemically inspired graphemic patterns, which can be
detected by means of a ‘deductive’ approach.

9. Acknowledgement
The presented work was carried out in the Autonomata
project, granted under the Dutch-Flemish STEVIN
program. The project partners are the universities of Gent,
Nijmegen and Utrecht and the companies Nuance and
TeleAtlas. The university of Utrecht and the two
companies are acknowledged for designing and providing
the name dictionaries that were used for the training and
evaluation of the p2p converters.

10. References
Andersen, O.; Kuhn, R.; Lazarides, A.; Dalsgaard, P.;

Haas, J. and Nöth, E. (1996).“Comparison of two tree-
structured approaches for grapheme-to-phoneme
conversion”, Procs. ICSLP, Kobe, 1700-1703.

Black, A., Lenzo, K., Pagel, V. (1998).“Issues in building
general letter to sound rules. Procs. ESCA/COCOSDA
workshop on Speech Synthesis (Jenolan Caves), 77-81.
Boula de Mareüil, P.; d’Alessandro, C.; Bailly, G.;

Béchet, F.; Garcia, M.; Morel, M.; Prudon, R. and
Véronis, J (2005). “Evaluating the pronunciation of
proper names by four French grapheme-to-phoneme
converters”, Procs. Interspeech, Lisbon, 1521-1524.
Bouma, G. (2000). “A finite state and data-oriented
method for grapheme to phoneme conversion”, Procs.
ACL, 303-310.

W. Daelemans, J. Zavrel, K. van der Sloot, A.van den
Bosch (2004). TiMBL: Tilburg Memory Based Learner,
5.1, Reference Guide. ILK Technical Report 04-02
(http://ilk.uvt.nl/downloads/pub/papers/ilk0402.pdf)

S. Quazza , H. van den Heuvel (2000). “The use of lexica
in text-to-speech systems.” In: F. Van Eynde, D.
Gibbon: Lexicon development for speech and language
processing. Kluwer Academic Publishers, Dordrecht,
Boston, London, 207-233.
Yvon, F.; Boula de Mareüil, P.; d’Alessandro, C.;

Aubergé, V.; Bagein, M.; Bailly, G.; Béchet, F.; Foukia,
S.; Goldman, J.; Keller, E; O’Shaughnessy, D.; Pagel,
V.; Sannier, F.; Véronis, J and Zellner, B. (1998).
“Objective evaluation of grapheme to phoneme
conversion for text-to-speech synthesis in French”,
Computer Speech and language 12, 393-410.
Yang, Q. and Martens, J.P. (2000). “Data-driven lexical

modeling of pronunciation variations for ASR," Procs
ICSLP (Bejing), vol. 1, 417-420

Yang, Q; Martens, J.P.; Ghesquiere, P.J. and Van
Compernolle, D. (2002). “Pronunciation variation
modeling for ASR: Large improvements are possible
but small ones are likely to achieve," Procs PMLA
(Estes Park, Colorado), 123-128.
Yang, Q. (2005). “Data-driven approaches to pronuncia-

tion variation modelling for automatic speech
recognition”, PhD thesis, University Gent.

292

